ORGANIC ELECTROSYNTHESIS AMBIDENT SUBSTITUTION REACTIVITY OF CYANO-ALKANES: ELECTROCHEMICALLY-DIRECTED <u>C</u>-ALKYLATION BY BROMO-ALKANES

G.C.Barrett* and T.J.Grattan

Oxford Polytechnic, Headington, Oxford OX3 0BP, United Kingdom

Summary – The formation of <u>N</u>-monoalkylacetamides through the electrolysis of bromoalkanes in cyanoalkanes at 2.35V is largely suppressed at higher electrode potentials in favour of a synthetically more useful \sqrt{C} -alkylation process.

The <u>N</u>-alkylation of cyanoalkanes by carbonium ions is well known, both in its acid-promoted form involving highly-substituted alkenes or tertiary alcohols as reactants (the Ritter reaction; ¹ path A in SCHEME), and in its more general electrochemical variant employing halogenoalkanes (path B in SCHEME):^{2,3}

Electrochemical acetamidation has been reported for a wide variety of substrates RX, many of these observations arising incidentally as a consequence of the use of acetonitrile as a preferred solvent for organic electrosynthesis. A substantial study³ of the electrosynthesis of <u>N</u>-monoalkylacetamides from bromoalkanes in acetonitrile containing tetra-ethylammonium tetrafluoroborate (TEAF) or lithium perchlorate has established the intervention of carbonium ion intermediates (path B in SCHEME) when anode potentials of 2.35V are used; yields are <u>ca</u>. 40% with primary bromoalkanes.³ We now report that this <u>N</u>-alkylation reaction is almost entirely suppressed in favour of the alternative \sqrt{C} -monoalkylation reaction (path C in SCHEME) in the same system at higher electrode potentials (8 - 10V). Representative experimental results for this new homologation process are collected in the TABLE; yields refer to half-completed reactions (1e mole⁻¹ bromoalkane).

No di-alkylated cyanoalkane was found, consistent with the more sluggish reaction observed with propionitrile. No isomeric products were formed, in contrast with the mixture of <u>N</u>-alkylacetamides obtained <u>via</u> the carbonium ion pathway, ³ thus suggesting that the α /<u>C</u>-alkylation reaction involves the α /-carbanion of the cyanoalkane in a nucleophilic substitution process; the base-mediated equivalent process (path D inSCHEME) is well known.⁴ An analogous reaction, the electrochemical addition of the acetonitrile anion to phenyl ketones, has been reported, ⁵ and here the anion is considered to arise by attack on solvent of an electrochemically reduced unsaturated species formed from the ketone, or from the addition-elimination product PhCR=CHCN. The present results show that a base-free system can also support the electrochemical generation of a cyanoalkane α /-carbanior thus opening up a wider range of homologation processes.

TABLE. C-Alkylation of Cyanoalkanes^a

Reactants	Product ^b	Yield (%) of product	Yield(%) of product, allowing for recovered bromoalkane ^{c, d}	¹ H NMR data ^{e, f}
n-C ₅ H11Br, CH ₃ CN	n-C ₆ H ₁₃ CN	42	88	0.90t(3H), 1.3-1.5m(8H), 2.35t(2H)
n-C ₅ H11Br, C ₂ H5CN	n-C ₅ H ₁₁ CH(CH ₃)	CN 10	67	0.93t(3H), 1.85d(3H), 1.1-
n-C ₆ H13Br, CH3CN	n-C 7H 15CN	41	89	0.91t(3H), 1.51m(ca 10H), 2.35t(2H)

^a Cyanoalkane solutions 0.6M in bromoalkane, 0.1M in TEAF, Pt wire cathode, Pt sheet anode, electrode potentials $\pm 8-10V$ w.r.t. Ag/0.1MAgNO₃ reference electrode, current 250-300mA, at ambient temperature ^b Structures assigned by mass spectrometry and/or comparison of GLC and ¹HNMR data with those of authentic samples ^c 5 to <u>ca</u> 12% <u>N</u>-alkylacetamides were also detected by GLC ^d 2m 15% Apiezon on Chromosorb P at 200°C, 201b in⁻² N₂ ^e S, in C²HCl₃ ^f For samples isolated from distilled reaction mixtures by prep GLC

Acknowledgments – We thank Dr R.Brettle (University of Sheffield) for discussion, and Mr Humberto Marquez Marin (Dyson Perrins Laboratory, University of Oxford) for preparative GLC and ¹H–NMR data.

REFERENCES

- ¹ J.J.Ritter and P.P.Minieri, <u>J.Am.Chem.Soc.</u> 70, 4045(1948); L.I.Krimen and D.J.Cota, <u>Org.Reactions</u> <u>17</u>, 213(1969).
- A.Laurent, E.Laurent, and R.Tardevil, Tetrahedron 30, 3423, 3431(1974); F.Vincent, R.Tardevil, and P.Mison, <u>Ibid.</u> 32, 1681(1976); L.L.Miller and B.F.Watkins, <u>Tetrahedron Letters</u> 4495(1974); N.L.Weinberg, in 'Technique of Electro-organic Synthesis', ed. N.L.Weinberg, Wiley-Interscience, New York, 1974, p.434.
- ³ J.Y.Becker and M.Münster, <u>Tetrahedron Letters</u> 455(1977); J.Y.Becker, <u>J.Org.Chem.</u> 42, 3997(1977); J.Y.Becker, <u>Tetrahedron Letters</u> 1331(1978).
- ⁴ F.W.Bergstrom and R.Agostino, <u>J.Am.Chem.Soc.</u> <u>67</u>, 2152(1945); E.M.Kaiser and C.R.Hauser, <u>J.Org.Chem</u> <u>33</u>, 3402(1968).
- ⁵ E.M.Abbot, A.J.Bellamy, and J.Kerr, Chem.and Ind. 828(1974); A.J.Bellamy, J.C.S.Chem.Comm. 944 (1975); A.J.Bellamy, G.Howat, and I.S.MacKirdy, J.C.S.Perkin II 786(1978).

(Received in UK 23 August 1979)